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Parallel inviscid O( 1) shear interacting with O ( E )  spanwise-independent neutral ro- 
tational Rayleigh waves are used to model turbulent boundary layer flow over 
small-amplitude rigid wavy terrain. Of specific interest is the instability of the flow to 
spanwise-periodic initially exponentially growing longitudinal vortex modes via the 
Craik-Leibovich CL2-O( 1) instability mechanism and whether it is this instability 
mechanism that gives rise to longitudinal vortices evident in the recent experiments 
of Gong et al. (1996). In modelling the flow, wave and turbulence length scales are 
assumed sufficiently disparate to cause minimal interaction. This allows the primary 
mean velocity profile to be specified. Two profiles were chosen: a power law and the 
logarithmic law of the wall. Important in wave-mean interactions of this class are 
the effect of wave-induced fluctuations upon the mean state and the influence of the 
developing mean flow on the fluctuating part of the motion. The former is described 
by a generalized Lagrangian-mean formulation; the latter by a modified Rayleigh 
equation. Together they comprise an eigenvalue problem for the growth rate appro- 
priate to the initial stages of the instability. Both primary mean flows are unstable to 
longitudinal vortex form in the presence of Rayleigh waves whose amplitudes diminish 
with altitude. Moreover the interaction is most unstable for streamwise wavenum- 
bers cx = O(l) ,  the growth rate increasing with increased spanwise wavenumber. In 
comparing the results with experiment, it is first shown that spanwise-independent 
waves excited in Gong et al.'s experiment depict velocity fluctuations whose ampli- 
tudes diminish with altitude in accord with those for appropriate Rayleigh waves. 
Concordantly, the longitudinal vortices depict transverse velocity components that 
are weaker by a factor of E than the axial perturbation and are observed to grow at a 
rate consistent with exponential growth. All are key features of CL2-O( l), although 
the observed growth rate is not in accord with the maximal suggested by inviscid 
instability theory. Rather it appears that the spanwise wavenumber takes a value at 
which energy is extracted from the mean motion in an optimal volume-averaged sense 
while minimizing energy loss to both viscous dissipation and small-scale turbulence. 
It is concluded that the CL2-O( 1) instability mechanism is physically realizable and 
that the data of Gong et al. represent the first documented observations thereof. 
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1. Introduction 

Longitudinal vorticies have long been observed beneath (Langmuir 1938) and 
above (LeMone 1973) the wind-driven surface of open bodies of water. Each affect 
the water surface : for example Langmuir circulations concentrate flotsom or other 
organic materials into streaks or bands, while circulations in the atmosphere affect the 
short-scale sea roughness which synthetic aperture radar likewise depicts as streaks 
or bands (Alpers & Brummer 1994), as does cold air advecting over warm water 
but visually (Stull 1988). In each instance the streaks indicate that the vortices are 
more or less aligned with the wind and of course the fact that they affect the surface 
suggests a close proximity to it. But while the spanwise scale of Langmuir cells is 
typically a few to several hundred metres (Leibovich 1983), atmospheric cells are of 
the order of kilometres. The presence of such cells is thought to greatly influence 
heat, mass and momentum transport properties both within and between the lower 
atmosphere and upper ocean, features that raise the question, do atmospheric cells 
also occur over land? The answer is probably yes (particularly above wavy terrain, 
see Hunt, Lalas & Asimakopoulos 1984), although the absence of evidence, vis a vis 
clearly defined footprints, has left the concept moot. Such vortices have, however, 
been observed in the experiments of Gong & Taylor (see Hunt et al. 1991) and by 
Gong, Taylor & Dornbrack (1996), but unclear here is the mechanism by which the 
vortices form. 

Gong et al. conducted a wind tunnel study of neutrally stratified zero pressure 
gradient turbulent boundary layer flow over two (aerodynamically) rough rigid un- 
dulating surfaces that comprise 16 small-amplitude spanwise-independent sinusoidal 
waves. Steady circulations with vorticity aligned with the mean motion were observed 
by the fourth wave, at which point the flow was approximately streamwise periodic 
and the boundary layer about one undulation wavelength thick. Interestingly, cir- 
culations were observed only above the smoother waves where the flow remained 
attached, whereas with the rougher waves it separated in the troughs. 

Longitudinal vortices in the presence of mean shear and small-amplitude (spanwise 
independent) two-dimensional waves bring to mind the Craik-Leibovich type-2 or 
CL2 instability mechanism, which Craik (1977) and Leibovich (1977) put forward 
to explain the presence of Langmuir circulations in the upper ocean. In such 
circumstances the wind-induced shear is weak, typically O(e2) in the presence of O(e)  
surface gravity waves, where e is a small parameter characteristic of the wave slope. 
The ensuing interaction is unstable and gives rise to longitudinal vortices that grow 
exponentially fast whenever the gradients of both the mean velocity and the Stokes 
drift are in the same sense. We denote this form of the instability CL2-O(e2). 

But in Gong et al’s experiment, and in the atmosphere, the mean shear is signifi- 
cantly stronger than O(e2). Craik (1982b) has shown that CL2 continues to operate 
in O( 1) shear, although now another measure of nonlinear rectification (of the waves 
both with themselves and the shear), the pseudomomentum, replaces Stokes drift 
as the catalyst for instability. Furthermore wave distortion, which is negligible in 
CL2-O(e2), here plays an important role by acting to diminish the instability (Phillips 
& Wu 1994). And finally, instability to longitudinal vortex form occurs whenever, 
from the reference frame of the waves, and in the direction of increasing mean flow, 
the relative increase in mean flow exceeds the relative increase in wave amplitude 
(Craik 1982b; Phillips & Shen 1996). To date only two cases of CL2-0(1) have been 
treated in detail: uniform shear between rigid wavy walls and exponentially decaying 
shear beneath surface gravity waves (Phillips & Wu). But the CL2-0(1) instability is 
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FIGURE 1. Sketch of flow over wavy terrain showing the non-dimensional streamwise wavenumber 
CI = 2n6/2 as it relates to the characteristic thickness of the boundary layer 6 and terrain wavelength 
1. Shown also is the amplitude of the wave-induced flow perturbation. 

ubiquitous over a wide range of physically interesting waveemean flow interactions 
(Phillips & Shen): in particular these authors show that boundary layer profiles, 
when viewed from the reference frame of the waves, in this instance the wavy wall, 
are unstable (to longitudinal vortex form) only in the presence of what they term 
type-2 Rayleigh waves, i.e. waves whose amplitudes diminish with distance from the 
wall. To wit, just the class of waves we should expect when a boundary layer is 
perturbed by wavy terrain and just the class observed by Gong et al.. There is thus 
a prima,fucie case that the circulations observed by Gong et al. are excited by the 
CL2-O( 1) instability, which if true would represent the first documented observation 
of CL2-O(1). Our intent here, therefore, is to provide further details of CL2-0(1) 
in the configuration studied by Gong et al., with a view to ascertain whether the 
instability they observe is or is not CL2-O( 1). 

Specifically we model the mean turbulent boundary layer by an inviscid parallel 
0(1) shear flow and consider the instability (to longitudinal vortex form) of that 
flow to O ( E )  two-dimensional spanwise-independent waves, assumed generated by a 
rigid wavy wall as sketched in figure 1. We assume from the outset that the wave 
and turbulence length scales are sufficiently disparate to cause minimal interaction, 
the turbulence scales being smaller. In consequence we need concern ourselves only 
with the mean (i.e. streamwise averaged) velocity profile. We further assume that 
although viscosity acts to give rise to the mean velocity profile, it plays no further 
significant role. The boundary layer thus perceives undulations in the rigid wall as 
slippery wave generators that give rise to waves which satisfy the Rayleigh equation. 
That is, the waves are Rayleigh waves defined by the mean shear flow and amplitude 
of the wavy wall. We approximate the mean velocity profile first by a power law 
($54.1-4.3) (because it has clear analytical advantages in determining admissible 
Rayleigh waves) and second by the logarithmic law of the wall (54.4) which, while 
more representative of observation, necessitates the numerical solution of Rayleigh's 
equation (53.1 ). The ensuing inviscid nonlinear wave- mean interaction is described in 
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part by the generalized Lagrangian-mean equations of Andrews & Mclntyre (1978), 
which contract, for rectilinear flows, to an eigenvalue problem for the growth rate of 
spanwise-periodic longitudinal vortices (Craik 1982b). The Rayleigh-Craik equation, 
which accounts for wave distortion due to mean flow anomalies, completes the 
specification ($2). The results are reported in 34, compared with the experimental 
data of Gong et al. in $5, and are discussed in 36. 

2. Background 
2.1. The generalized Lagrangian-mean equations 

The ubiquity of wave activity in geophysics has long necessitated the need for a 
rational way to separate ‘wave’ from ‘mean’ flow and to define wave-mean interactions, 
and the path to this end culminated with the generalized Lagrangian-mean equations 
of Andrews & McIntyre (1978). These equations describe the back effect of oscillatory 
disturbances upon the mean state and are exact provided the mapping between the true 
Lagrangian and reference generalized Lagrangian-mean (GLM) remains invertible ; 
GLM is thus valid for rotational waves of any amplitude but is of doubtful validity in 
the vicinity of critical layers, unless the critical layer occurs at a rigid boundary. The 
Lagrangian-mean velocity so described, however, is not the ‘mean following a single 
fluid particle’; rather it is the velocity field describing trajectories about which the 
fluctuating particle motions have zero mean, when any averaging process is applied. 
Here the choice is a streamwise average at fixed z .  To express ideas like ‘steady 
mean flow’, an Eulerian description of the GLM, with position x and time t as 
independent variables, is employed, so that the GLM formulation is really a hybrid 
Eulerian-Lagrangian description of wave-mean flow interactions. Then provided the 
abovementioned mapping is invertible, there is, for any given Eulerian velocity u(x, t ) ,  
a unique ‘related velocity field’ iiL, which is the Lagrangian-mean velocity such that 
iiL is related to the Eulerian-mean velocity by the generalized Stokes drift d ,  as 
rsL = rs + d.  

Andrews & McIntyre derive equations for the GLM motion from the compress- 
ible Navier-Stokes equations, and for homentropic flows of constant density in a 
non-rotating reference frame, the GLM momentum equation is, in the absence of 
dissipation and pressure gradients, 

D L ( @  - pi) + iikl,i(Uk” - p k )  = 0, (2.1) 

where repeated indices imply summation, commas denote differentiation and 
(x1,x2,x3) = (x,y,z). The operator DL is defined as DL = d,t + and the 
vector wave property pi, the pseudomomentum per unit mass, is a measure of the 
nonlinear rectification of oscillatory disturbances both with themselves and the mean 
shear flow. Further details are given elsewhere (Andrews & McIntyre 1978; Craik 
1985). 

2.2. 0 ( 1 )  shear and O ( e )  waves 

Consider the interaction between an O( 1) primary shear flow and two-dimensional 
straight-crested periodic waves. Then with space coordinates (x, y, z ) ,  and in the 
reference frame of the waves which is here that of the terrain, our primary shear flow 
in [ z l , z ~ ]  is ii(z). We shall assume that viscosity is important only so far as giving 
rise to the mean velocity profile, and employ length and velocity scales that lead to 
the scaling U(1) = 1. The waves are (initially) spanwise-independent and of constant 
amplitude with slope characterized by the small parameter e ;  so provided critical 
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layers (ii = 0) occur only at boundaries and not in the interior of the primary flow, 
then the temporal growth or decay rate of the waves is zero and they induce an O(e2)  
pseudomomentum field p = [PI, 0, 01. 

Envisage now small spanwise-periodic perturbations with Eulerian velocity com- 
ponents of the form 

(ii,v", 6) = dRe{e"'e''y[i?(z), -eniG(z), e"G(z)]} 

16 + G,2 = 0. 

(2.2) 

which, provided the amplitude field of the waves is steady, satisfy continuity correct 
to 0 ( e 2 )  as 

Here d measures the strength of this motion relative to the primary shear flow 
and is assumed sufficiently small that linearization with respect to it yields a good 
approximation to the equations governing the spanwise-periodic disturbance; o is 
the growth rate of the spanwise perturbation. In view of our rigid wavy wall at say 
z = z I  and a wave of smaller or zero amplitude at say z = z2 (which for specificity 
we consider as rigid), we impose zero wave and velocity distortion at both, i.e. 

(2.3) 

A 

6 = 4 = 0 at z = z1,z2 (2.4) 

where 4 is defined below. Of course for instability, (2.1) and (2.3) must admit non- 
trivial solutions for such boundary conditions and that requires n = 1 (Craik 1982b). 
As is evident from (2.2), velocity perturbations in the y- and z-directions are therefore 
weaker by a factor of E than the x velocity perturbation; concordantly 00 = 0 in the 
expansion for CT, leaving c = m1 + O(e2). Thus (2.1) and (2.3) reduce to 

0,ii = -\$ii,,, (2.5) 

Observe that two components of the pseudomomentum 

p1 = e2Pl(z) + e2dRe(eGte1'yj?l(z)} + O(e4, e34 ,  e2A2),  (2.7) 

play a role. The first, due to the x-periodic perturbation field tr, = eRe[4,z, 0, -icq5] + 
O(ed, e2, € A 2 ) ,  is (Craik 1982a) 

where 4(z)  and a (see also $4) denote the eigenfunction and non-dimensional 
wavenumber of the primary (i.e. O(E) component of the) wave field which together 
satisfy Rayleigh's equation, 

u($,zz - a 2 4 )  - a,& = 0. (2.9) 

The second component, Re{ e"y$,}, is the spanwise-periodic perturbation of pseudo- 
momentum due to distortion of the primary wave field by the emerging secondary 
Eulerian velocity field. 

Unfortunately the GLM formulation provides no direct means of evaluating j ? ~  so 
a separate examination of the wave field is necessary. On doing so, Craik (1982b) 
found that 

(2.10) 



326 u! R.  C. Phillips, Z. Wu and J .  L. Lumley 

where d, 3, $? and 9 are functions which are independent of CT, and that &z), 
which relates to the O(eA) spanwise-periodic wave field modification, satisfies the 
Rayleigh-Craik equation 

(2.1 1) 

in which 1 is the spanwise wavenumber. 
Thus given the primary shear flow ii and, from (2.9), the primary wave field 

eigenfuction 4 along with appropriate boundary conditions, the eigenvalue problem 
for o1 is completely specified by the coupled system (2.5), (2.6) and (2.11), together 
with (2.8) and (2.10). 

3. Numerical procedure 
3.1. Numerical solution of the Rayleigh equation 

Rayleigh's equation (2.9) is soluble analytically for mean velocity profiles that obey 
a power law (Phillips & Shen 1996; see also $4) but that is not the case for 
logarithmic or most other profiles. To proceed therefore we require a numerical 
scheme commensurate with that for solving our eigenvalue problem (53.2), specifically 
one using Galerkin techniques. In outlining the technique, we shall restrict attention to 
phase velocities that are real, although of course the technique is readily extendible to 
complex phase velocities. We shall also restrict attention to waves whose amplitudes 
diminish as az --+ co, i.e. Rayleigh waves of the second kind (see 54.1); appropriate 
boundary conditions to (2.9) on the semi-infinite domain z E [zl,co] are thus 

4@1) = 41, 4(co) = 0, (3.1) 

where z1 and 
For computational reasons, however, the semi-infinite domain is less desirable 

than a finite domain and so we employ the transform 5 = e-'. Then on writing 
F ( 5 )  = f i , z z / i i ,  (2.9) becomes 

are arbitrary constants. 

t24,tt + 54,t - (a2 + F ( 5 ) ) 4  = 0 (3.2) 

with the boundary conditions 

4(0) = 0, 4(5l) = 41, (3.3) 

where = eP1 .  

expressed as 
Our intent is to solve (3.2) by Galerkin techniques and thus suppose #(<) can be 

where ~ ( 5 )  is an arbitrary function which satisfies the boundary conditions (3.3) 
and f'( 5 )  are basis functions (in this instance Chebyshev polynomials) that satisfy 
homogeneous boundary conditions 

f i (41)  = f ' (0) = 0. (3.5) 

Finally, ai are coefficients of the expansion and N is an integer large enough to make 
the expansion a close approximation to 4. 
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FIGURE 2. Solution of the Rayleigh equation for wave amplitude, C I ~ ,  for type-2 waves, for the 
power-law (solid line) and logarithmic law (dashed line) mean velocity profiles; for CI = 1. 

Substitution of (3.4) into (3.2) then yields the residual 

N 

Nt) = t2Y& + 5Y,< - ( M 2  + F(t))W + c a1[t2ffI,-t + tffI< - b2 + F(t))f'I, (3.6) 
1=1 

which is required to satisfy 

(R(5),  f"(5)) = 0 ;  j = L2, .  . . , N, 

where the inner product is 
b 

(8, h)  = / g(s)h(s)ds 
a 

for continuous functions g(s)  and h(s) defined in [a, b] .  
This results in N linear algebraic equations for a, which can be written in the form 

dLjaJ = F J 3  (3.7) 

where coefficients of the N x N matrix d,, and N x 1 matrix 9, are defined as 

Q,, = (jYt), t2& + tf i  - (a2 + W9fJ(t))> 
9 1  = -(fW t2w,<,- + tY,,- - (a2 + fYt))v(t)). 

Then, with the coefficients a, at hand, we can recover 4([) and ultimately 4 ( z ) .  
To test the procedure calculations were made using power-law profiles for U ;  with 

N = 20 the technique realized + ( z )  profiles for each q (see 54.2) closely in accord 
with the analytical solution (4.2). Finally, we see in figure 2 that distributions in wave 
amplitude for a logarithmic profile (4.6) are not greatly different from those for a 
one-seventh power-law, boundary conditions (i.e. wave amplitude j being identical at 
an appropriate elevation z1 in each case. 
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3.2, Solution of the eigenvalue problem 
Galerkin techniques were also used to solve the eigenvalue problem (2.5), (2.6) and 
(2.11) for the eigenvalue G ~ ,  which because (2.6) and (2.11) are real, may be real, 
imaginary or a complex conjugate pair. Complete details are given in Phillips & Wu 
(1994). Briefly, we suppose G(z) and &z)  can be expanded in linearly independent 
complete sets of basis functions ui (z)  and 4 i ( z )  as 

M M 

i=l i=l 

where bi and bM+i are the expansion coefficients of G(z) and $ ( z )  respectively, and M 
is integer. The basis functions were chosen to satisfy the boundary conditions (2.4), 
which suggest we set ui(z)  = 4i(z). 

Substitution of (3.8) into (2.6) and (2.11) then leads to the residual functions RJz)  
and Rd(z) which must satisfy the inner products 

(Ru(z), u j (z ) )  = 0 ;  (R+(z), 4 j ( z ) )  = 0. 
A 2 x M-order linear eigenvalue problem for A*, where ,I = l / ~ ~ ,  results as 

2 = ,12A!, (3.9) 

where 2 and ~22 are 2M x 2M-order matrices with components that are M x M-order 
sub-matrices; specifically, the components are functions of CI and 1, but not ol. 

Of interest is the largest real eigenvalue G ~ ,  or if no real values occur the complex 
value with the largest real part, for each pair (a,E) and the eigenfunctions and 6. 
Chebyshev polynomials were used as basis functions and the accuracy provided by 
the M = 20 expansion was considered adequate for our purposes. All computations 
were performed on a DECstation 5000/200 using double-precision arithmetic with 
IMSL routines to solve the eigenvalue problem (3.9). 

4. Boundary layer flow over wavy terrain 
Boundary layer flow over wavy terrain is characterized by two length scales: the 

wavelength of the undulations ,I and a measure of the thickness 6 of the boundary 
layer that is formed over them; both are captured in the non-dimensional streamwise 
wavenumber a = 27c6/A. Thus, since type-2 Rayleigh waves are most influential over 
az = O( 1) (see figure 2), three categories of boundary-layer/terrain interaction are 
evident: in the first the extent of the boundary layer well exceeds that of the wave 
field and so a > O( 1); in the second the boundary layer and wave field are of similar 
extent so a = O( l), and in the third the wave field extends far beyond the boundary 
layer, yielding a < O(1). Each is sketched in figure 1. Accordingly the spanwise 
spacing of longitudinal cells which form is L, so that 1 = 2716/L, and because it is 
doubtful whether cells excited by CL2-O( 1) extend beyond either the boundary layer 
or the wave field, it follows that 1 2 sup{a~c/6y,n/y}, where y is the aspect ratio, i.e. 
width/height of the cells. Our intent then is to consider a range of a that captures 
each of the three categories with an appropriate range of 1 throughout. 

4.1. Power-law mean velocity profile 
As our first example we consider the shear flow ii = zq in [ z I , z ~ ] ,  with z > 0 and q a 
real positive number, upon which is superposed a two-dimensional neutral-wavelike- 
disturbance a 4  which satisfies the Rayleigh equation (2.9). Since the wall region and 
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thus z = 0 are not of interest, our calculation domain is chosen as [zl, 1 + zl], where 
zl is slightly larger than zero. In the course of our study various values of 0 < z l 4 1  
were employed. It transpired that Z I  affected the magnitude but had little influence 
on the generic form of ol(a,l) ,  so z1 was chosen such that ol(l ,m),  which remained 
O( 1) for all admissible z ,  was approximately unity, which is the case when z1 = 0.05. 

4.2. Rayleigh waves 
Admissible Rayleigh waves for the mean velocity profile zi = zq follow by substitution 
of a4 = j1/2@ and ( = az into (2.9) to yield the modified Bessel equation 

which has the general solution, 

@ = 4 k ( q - I / 2 ) ( 0  + A2Ky-1/2(1)- (4.1) 

Here 1+(q-1,2)(() and K q P 1 i 2 ( ( )  are the modified Bessel functions (Abramowitz & 
Stegun-1965) and A l ,  A2 arbitrary constants. Observe that as ( --+ 0, l+(q-1 ,2)  

is bounded while Kq-112 depicts a logarithmic singularity; conversely as ( + 03, 

Kq-1/2 is bounded while lk(q-l,2) is unbounded. Phillips & Shen (1996) have shown 
that boundary layer profiles of the class ii = -tIzlq with 0 < q 4 1  are unstable to 
longitudinal vortex form only in the presence of waves for which the wave amplitude 
u 4  diminishes as az + 03, i.e. Rayleigh waves of the second kind. We thus set A1 = 0 
and A2 = 1, so 

a4 = (az)”2Kq-1,2(az) (0 < xz < a). (4.2) 
Straightforward analysis then yields the pseudomomentum 

from which we find (see (2.6)) that 

1 
W - y J Z )  = 4a- (Kq+1/2Kq+3/2 + Kq-I,2Kq+1,2) - ~ 2az ( (4  + 2)K’ q+1/2 + d w }  2 

7{ 

(4.3) 
K being a function of az in all cases. 

If we further assume that the mean velocity profile is closely approximated by 
setting q = +, then the amplitude distribution a4 and the gradient product zi,zPtz(z) 
are unique. 

4.3. Results 
Of particular interest is the growth rate ol  and its variation with u and 1. We begin 
by determining o1 in a range where the most analytical progress can be made, namely 
the limit 12+a2 for a = O(1) (see Craik 1982b; Phillips & Shen 1996). This limit is 
realizable in nature although vortices have not as yet been observed at the larger 
spanwise wavenumbers (see $6), in particular as l 2  -+ 03, where, as we shall see, the 
growth rate is largest. Nevertheless, the asymptotic limit l 2  -+ co provides a useful 
check for our numerics. 

set fil = 0. In 
such circumstances two linearly independent solutions to (2.6), ,IA and , IB,  may be 
constructed via the WKBJ approximation. Then LA, RB = - ; r~r~zi ,~P&[l  k 11 and it 

For reference purposes we first exclude wave distortion, i.e. 
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FIGURE 3. Variation of the growth rate cI with streamwise wavenumber c( in the limit l 2  -+ 00: the 
analytical solution (4.4) (long dashes) in the absence of wave distortion; and numerical solution for 
a power-law (solid line) and logarithmic (short dashes) mean velocity profile. 

a 

follows (see Craik 1982b) that non-trivial solutions exist only if a,2u,2Pt2 is greater 
than unity. Thus the largest upper bound for 01 must occur when ii,2Pp2 is a maximum 
(in this instance at z = z1) and o , ~ ~ , ~ P &  is minimum, i.e. approaching unity from 
above, so that 

af - 2’2, lim ii,.ptZ (a  # 0, z2 -+ 001, (4.4) 

and our numerics concur. Unfortunately, an analytical solution for the case with wave 
distortion (i.e. with # 0) is not forthcoming so we must rely solely on numerics. 
The ensuing growth rates for both the distortion and non-distortion (4.4) case are 
depicted in figure 3. Observe that in accord with the cases studied by Phillips & 
Wu (1994), wave distortion acts to diminish the growth rate; however while they 
observed diminution only for wavenumbers a d 0(1), diminution is here evident to 
much larger wavenumbers. Note also that 01 is maximum when a = O( 1). This result 
concurs with Phillips & Wu’s finding for an exponentially decaying velocity profile 
beneath surface gravity waves but is in marked contrast to their result for uniform 
shear between rigid wavy walls, where 01 is a maximum in the long-wave limit a -+ 0. 
The contrast is apparently due to the type of wave field, which is irrotational in the 
presence of uniform shear but rotational in the presence of non-uniform shear. 

Looking now to the double long-wave limit CI -+ 0, 1 +. 0, we observe two very 
different regimes: in the first, denoted I, the most unstable growth rate o1 is real and 
follows the pattern depicted in figure 4. But in the second, denoted 11, a1 appears 
only as complex conjugate pairs. Similar behaviour was observed and investigated 
in detail by Phillips & Wu. Specifically in region 11, the flow remains unstable to 
longitudinal vortex form but the vortices are subject to a standing oscillation, i.e 
they stand in space and alternate in sign; there is also the possibility of vortices 
propagating spanwise at equal and opposite speed. Moreover, in view of the bound 
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FIGURE 4. Contours of constant growth rate in the double long-wave limit. Instability to 
longitudinal vortex form in region I is dominated by real eigenmodes; in region I1 the instability is 
dominated by eigenmodes that are complex-conjugate pairs. 

c1 

FIGURE 5. Locus of Z,E/ol = 0 in (a, /)-space: (see also figure 6);  for power-law (solid line) and 
logarithmic (dashed line) mean velocity profiles. 

1 2 sup{an/6y,n/y}, we see that region I1 events can occur only with y + l ,  i.e. with 
rolls of large aspect ratio. 

Figure 4 further suggests that the growth rate increases monotonically with in- 
creasing 1 (see also figure 6) and that (in region I) there is the minimum 1, minimum 
a combination at which a particular growth rate can occur. The locus of points at 
which l,EI,, = 0 thus represents the optimal a, 1 growth rate combination. So we turn 
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1 
FIGURE 6. Curve of the growth rate 01 against spanwise wavenumber 1 along the locus at which 
I,aj,, = 0 sketched in figure 5 ;  power-law profile (solid line), logarithmic law (long dashes); growth 
rate for a = 6 which is applicable (see text 55) to the data of Gong et al. 1996 (short dashes; see $5). 

now to the full domain of g ~ ( a ,  I )  and plot this locus in (a, 1)-space in figure 5; observe 
that it occurs when a is O(1) for all 1. We plot the growth rate along this locus in 
figure 6. 

Finally we depict the eigenfunctions 6 and Zi in figures 7 and 8 respectively. Observe 
that for 1 % 1 distortion is confined to the lower portion of the domain and that it is 
then closely true that 6 K 6. 

4.4. Logarithmic mean velocity projile 
Turbulent boundary layers have long been known to have mean velocity profiles that 
satisfy, in the overlapping portions of the wall and outer regions, the logarithmic law 
of the wall 

where U, is the wall velocity scale and rcC is a constant whose value is determined 
by the level of roughness of the surface. So for completeness we should like to repeat 
our calculations with such a profile, assuming wavy terrain of equal amplitude to that 
in $$4.14.3 at z = zl. Of course since the power-law and logarithmic law give rise 
to similar wave fields as we saw in figure 2, we should not expect greatly different 
results; and that is the case as we see by viewing figures 3, 5,  6, 7 and 8. We shall not 
comment further, but will outline how such calculations were made. 

First, in accord with the non-dimensional scheme where US is the reference velocity 
at z = 6 and thus ii( 1) = 1, we rewrite (4.5) as 

ii = In(ez8) for z E [zl ,  1 + zl] (4.6) 

(where e is the exponential number). To arrive at this form we require eKCb-l(d U,/v)fi = 
1, where p = U,/USrc and, in order to exclude the critical layer at ezp = 1, demand 
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FIGURE 7. Eigenfunction 3 for I = 0.1,1,5,10,50,100 and c( = 1 ; (a )  power-law velocity profile; 
( h )  logarithmic-law profile. 

ezf > 1 ; the constant p is then chosen accordingly. In fact we determine p by setting 
z; = Inez!, i.e. by equating U(zl) with its counterpart in the example of $$4.1-4.3. 

Then to ensure the terrain has the same amplitude at z = z1 as in the power-law 
case, we set a 4 1  = (azl)1/2K,-I/2(az1). The boundary condition at z = 1 +zl ,  however, 
is less clear and so we solve (3.2) over the semi-infinite domain with u 4  + 0 as 
az -+ a, which is known to be the case for type-2 waves (see $3.1); we then use that 
portion of the solution relevant to the domain [zl, 1 + zl]. 

5. Comparison with experiment 
Gong et al. (1996) conducted a wind tunnel study of the turbulent boundary layer 

that is formed over 16 rigid sinusoidal waves of amplitude a, wavelength 2 and 
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FIGURE 8. Eigenfunction fi for 1 = 0.1,1,5,10,50,100 and a = 1; (a) power-law velocity profile; ( b )  
logarithmic-law profile. 

maximum wave slope 2.na/3, w 0.5. The tunnel working section was about 33, high, 
41 wide and 301 long, where I w 0.61 m. Two floor roughnesses, with roughness 
heights of 3 x low5 m and 40 x low5 m, were employed over the undulating portion 
of the floor and that preceding it. Both gave rise to a boundary layer that was 
turbulent well upstream of the first undulation, after which it grew to about A thick, 
thereby suggesting a = 2n6/A w 6. The boundary layer was neutrally stratified and 
with zero pressure gradient with a free-stream velocity of about 10 m s-'. Hot-wire 
anemometers were used to measure mean velocity and turbulence intensities and 
indicated, inter alia, that the flow was periodic by the fourth undulation. The data 
also indicated that a secondary flow, evident first in the initial trough, developed 
to saturation by the fourth wave crest, at which point it was seen to manifest as 
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circulations confined to the boundary layer with vorticity aligned with the flow; the 
cells had a vertical extent of approximately 6 and three cell-pairs spanned the tunnel. 
This secondary flow was observed only above the smoother surface, however, to which 
the flow remained generally attached, not the rougher, where it separated. Further 
experiments by Miller (1995) (in another wind tunnel but using the same wavy wall) 
concur. 

Our purpose here is to determine whether the instability giving rise to those 
longitudinal circulations is CL2-O( 1). There are of course other mechanisms that 
excite such circulations : the Taylor-Gortler and Benney-Lin (1960) instabilities for 
example, but each has features discordant with the experiment. First, Taylor-Gortler 
instability is associated with cells that are small with respect to the radius of curvature, 
a feature not present here, although it should be noted that CL2-0(6*) is akin, if only 
in an averaged sense, to Taylor-Gortler: i.e. CL2-O(f2) comes from an 0(e2) mean 
curvature, not from an O ( E )  local curvature that alters sign along the wave (Craik 
1982b). It is also possible to have a local Taylor-Gortler instability that is distinct 
from CL2-0(c2). Second, Benney-Lin instability and its close relative CL1 (Craik & 
Leibovich 1976) presume an imposed wave field with spanwise structure, a feature also 
absent in the above experiment; and moreover, Benney-Lin and CL1 vortices grow 
algebraically rather than exponentially in time. Of course exponential growth need 
not be faster than linear growth if the early behaviour is relevant, but the rapidity 
with which the instability in the experiment saturates hints at exponential growth. 
Finally longitudinal vortices can also arise owing to nonlinear effects associated with 
unsteady (and viscous) critical layers (see e.g. Wu 1993), but here the critical layer is 
at the boundary, thereby excluding such instabilities. 

There is therefore a prima Jizcie case that the longitudinal vortices in the experiment 
are excited by the CL2-0(1) instability, which as Phillips & Shen (1996) ascertained, 
and as we have seen in detail above, does operate in circumstances similar to those 
measured. Key features of CL2-O( 1) are an initially two-dimensional wave field 
described by neutral rotational Rayleigh waves (of slope characterized by the small 
parameter e )  interacting with O( I )  shear, exponential growth to longitudinal vortices, 
velocity perturbations in the y -  and z-directions that are weaker by a factor of e than 
their x-velocity perturbations and, at least for the cases so far considered in detail, Zi 
of one sign. Our intent then is to compare each of these features as calculated and as 
measured, beginning with the wave field. 

Suppose then that beyond the fourth wave (where the flow is essentially periodic) 
the local mean velocity U can be decomposed as 

U ( X ,  Y , Z ; a )  = U(2) +f(aX)[Up(Z’;aX) + o(z’ ;ax)cos1Y] + O(aZ)cos(aX + 9). 
(5.1) 

Here U and 6 are experimental realizations of their lower-case counterparts, as 
are X ,  Y , Z ,  while 6 is a streamwise-periodic velocity component due to the two- 
dimensional wave field; and, to ensure conservation of mass flux, we introduce the 
streamwise periodic factor f ( a X )  > 0 such that f ( a X  + n/2)  = f ( aX + 3n/2) = 1. 
Concordant with the conservation of mass flux, the velocity components 6(Z’; ax) 
and Up(2’;aX) (later defined) are written in streamline variables Z’, where Z = 
Z’ + h(X,Z’) ,  such that h(X,O) specifies the terrain profile and h ( X , m )  -+ 0, as is 
to be expected with type-2 waves. Finally, 9(aZ) allows for any small phase shift 
with height as suggested by computations of turbulent shear flows over topography 
(Ayotte, Xu & Taylor 1994). 

Then since U was measured on Y = 0 at ax11 + nn, where n = 0, :, 1, i, 2 and 
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FIGURE 9. Plot of the amplitude of the streamwise periodic velocity perturbation caused by the 
undulating floor. Data of Gong et al. (1995) for flow over smooth (+) and rough (0) undulations. 
Lines assume type-2 Rayleigh waves of similar peak amplitude. 

az  

aX11 is the crest of the eleventh undulation, we can deduce 0 and U + U p  + 0 for 
Z E (a/6,1] as for example 

tl = ; [U(aX,1) - U(aX11 + n)] + O(€*) (5.2) 

(5.3) 

and 

u + Up(aX11 + R / 2 )  + U(aX11 + R/2) " ; [ u ( a X l l )  + U(aX11 + .)I. 
We plot 0 in figure 9. On the same plot are distributions of ii cc 4,z (see $2) due to 

type-2 Rayleigh waves, where the constant of proportionality was chosen to match 
peak magnitudes. In both cases the decay in amplitude agrees very well with that of 
the data and there can be little question that the waves observed experimentally are 
indeed type-2 Rayleigh waves. Note that the amplitude of the fluctuating velocity field 
over the rougher undulations is significantly lower than that over the smoother ones, a 
consequence no doubt of the lee slope and trough separation occurring on the former. 
Moreover while (the variance of) streamwise turbulence fluctuations (not shown, see 
figure 7 of Gong et al.) exceed the amplitude of the wave-induced velocity field over 
the rougher wall, the converse is true (over some z at least) over the smoother wall. 

Now finite-amplitude wave equilibria induce their own Reynolds stress field - 
sometimes referred to as a wave-supported stress or, in GLM terms, a Stokes drift 
component in the z-direction - which results in a mean velocity field different from 
the undisturbed one (Nother 1921). We think of this velocity field anomaly as a 
primary instability and denote the ensuing spanwise-independent velocity component 
U p .  The sum U + U p  + 0 is plotted in figure 10, along with logarithmic distributions 
in z of slope p, which we assume approximate U .  Note that the slope p is known 
(as an average over the wavelength) in each case. Interestingly, an outer region, i.e. 
a velocity in excess of the logarithmic variation, is evident over the rougher waves 
but not the smoother ones, suggesting, in accord with our comment in the previous 



Longitudinal vortices in wavy boundary layers 331 

u+ 

I 

1 .o 

0.8 

0.6 

0.4 

0.5 1 5 
az 

FIGURE 10. Plot of the sum of the mean velocity U ,  the component resulting from the primary 
instability U p ,  and that due to the secondary instability 0. Data of Gong et al. (1995) for flow 
over smooth + and rough 0 undulations. Lines represent U with slope determined by the average 
shear stress over the wavelength. 

paragraph, that while turbulence dominates the former flow, Rayleigh waves dominate 
the latter. Furthermore while the difference U p  + 0 near the wall is only slightly larger 
than experimental scatter for the rougher wave case, it peaks at about 0.2 for the 
smoother. 

The wave slope is a maximum at the wall and diminishes rapidly and monotonically 
with height (see (4.2)). In the experiment that maximum is about 0.5 and if we denote 
that wave slope Q, then 2na/ lOi  < O(eE) < 2na//Z. The analysis however is based 
on the premise that e is less than O(1), to wit l/lOJlO < O(e)  < 1/Jl0, so that 
although cg falls within the bounds of the analysis for much of the boundary layer, 
there is a region close to the wall where is does not. We must therefore ask what 
influence the wave slope has on the instability mechanism and ascertain at what slope 
effects not currently included in the analysis become important. Full details will be 
given elsewhere, but it transpires that CL2-O( 1) remains the underlying instability 
mechanism for waves of O(cE),  although other influences, in particular the wave- 
supported stress, play a small role. Unfortunately whether that role acts to enhance 
or diminish the growth rate is not yet clear. 

The velocity perturbation 0 due to the secondary flow is plotted in figure 11. 
6 varies spanwise and velocity traverses suggest that a l l  NN :, so plotted also and 
scaled to peak in accord with the data is the profile for u" at cx = 6, I = 3c(/4. Of 
course u" is an eigenfunction relevant to the initial stages of the instability, while 0 
is pursuant to an equilibrated state in which nonlinearities have no doubt come into 
play. Nevertheless u" and 0 are of the same sign and have similar characteristics. As 
an aside we note that theorists have long conjectured that provided the eigenfunction 
is set before nonlinearities come into play then its functional form remains essentially 
unchanged in the nonlinear regime. Formal justification for this conjecture is wanting, 
but as we can see it is well supported in the present context. In view of this we use 
our knowledge of U p  + 0 and u" to estimate U p ,  which is also plotted in figure 11. 
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Note that the sign of U p  changes with z ;  this feature is also observed in atmospheric 
boundary layers over ocean waves (Miller et al. 1995). 

We turn now to the growth rate of the secondary flow and note that spanwise 
variations in mean velocity were first evident in the trough of the first undulation; 
moreover they were seen to persist and rapidly grow over the first few undulations, 
at which point they saturate. Our object is to determine whether such growth is 
exponential. Consider first the ratio of transverse to streamwise velocity components. 
In $2 we found that @ / a  = O(e)  for CL2-O(1) while from experiment J P m a x / O m a x  m 
which, since 27ca/10il < O ( E E )  < 27ca/A, concurs, just. In consequence we may use 
(2.5) and (4.6) to estimate the growth rate as o1 = -Sp/l;z = -@p/8Z .  Now 
figure 11 suggests that 0 has its peak at some Z E (0.1,0.4) and since p = 0.145 for 
the smoother undulations, we find (in accord with figure 6) that, ol E (0.2,0.7). Finally 
since it takes about 0.4 s for the flow to traverse the first four peaks, t = 0.4U~/6 = 6.7 
and thus ot = E ~ 5 1 t  E (0.6,2.3); but does at act exponentially? 

In order to answer this question consider the exponential growth scenario suggested 
by (2.2), namely [omax, mmax] = d [cut, eEeut]. Now wWx = k0.05 and oWx m k0.l 
by the fourth crest, so to realize @',,, our initial perturbation A must lie between 
kO.01 and k0.05. Since the upper bound exceeds the k0.02 scatter in velocity 
measurements at the crest of the first undulation it must be excluded, but the lower 
bound is admissible; furthermore it leads to o,,,,, = +O.l as it should. In short, 
the experimental results are consistent with exponential growth. Algebraic growth 
on the other hand can require hundreds of wave periods to induce well-developed 
circulations, as Faller (1978) and Faller & Caponi (1978) discovered in experiments 
designed to reproduce the CL1 instability. 

Thus since the undulations in Gong et d ' s  experiment do excite type-2 Rayleigh 
waves, and since the interaction of those waves with the mean shear does excite a 
secondary flow in which transverse velocity components are eE smaller than axial; 
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and since the secondary flow, which manifests as longitudinal vortices, initially grows 
exponentially fast we conclude that Gong et al. do observe circulations arising via 
the CL2-0(1) instability. But having come to that conclusion we must ask why 
CL2-O( 1) is observed only above the smoother undulations? We give two possible 
explanations, both related to the amplitude of 0 which is considerably lower over 
the rougher waves. The first is that circulations do indeed form, but that they are not 
observed because they are weaker and fall within the range of noise associated with 
data measurement. And/or second, because the streamwise turbulence fluctuations 
are of comparable or larger amplitude than 0 over the rougher waves, turbulence 
dominates the flow field thereby hampering and possibly obliterating the relatively 
large circulations. 

6. Discussion 
Our study indicates that parallel inviscid 0(1) shear with a representative velocity 

distribution interacting with O ( E )  spanwise-independent type-2 Rayleigh waves, is 
an appropriate model for non-separating turbulent boundary layer flow over small- 
amplitude rigid wavy terrain. Both the model and experiment depict an instability 
to longitudinal vortex form. Analysis indicates that the instability is CL2-0(1) and 
because the experiments concur with crucial aspects of our calculations, we conclude 
that the longitudinal vortices excited therein are also excited by CL2-0(1). This 
represents the first time that CL2-0(1) has been identified in a physical situation. 

But the calculations are wanting in some respects: first, finite-amplitude waves 
induce their own Reynolds stress and thus velocity field anomaly. This field is 
identifiable in the experiment but is ignored in the analysis. Serendipitously, vastly 
different mean velocity profiles do not appear to greatly affect f i ( z ;  a, 1 )  - compare our 
eigenfunctions with those of Phillips & Wu (1994) for example - although just how, 
if at all, an O(e2)  (spanwise independent) correction to the mean velocity profile due 
to a primary instability affects the growth rate of the secondary instability, is unclear. 

Second, we ignore interaction with the turbulence field. This would appear to be 
justified if velocity fluctuations associated with the waves well exceed, over at least 
part of the domain, the streamwise turbulence intensity. If the converse is true the 
turbulence motions apparently swamp or at least dramatically curtail the growth of 
longitudinal vortices. In short the occurrence or dominance of CL2-0(1) is affected 
by the relative amplitudes of the wave and turbulence fluctuations. 

Third, our calculations indicate that the growth rate of the secondary flow increases 
with 2 and is most unstable in the short-wave limit 1’ -+ a. Nature, however, chooses 
a slower growth rate, specifically that for which 1 is close to the lower bound peculiar 
to boundary layer flow over wavy terrain, given by I = sup{an/6y,n/y) ~ although 
whether smaller faster growing cell pairs also form but are not observed or are 
overwhelmed by nonlinearities or their larger confreres, is unclear. Similar disparities 
were observed by Poje & Lumley (1995) in their studies of coherent motions in the wall 
region of turbulent boundary layers. Following Lumley (1971) they note that although 
modes given by higher spanwise wavenumbers are better able to extract energy from a 
fixed spatial mean, they lose energy faster to the background turbulence. Accordingly 
while lower wavenumber modes are less affected by nonlinear interactions with the 
mean, they grow so slowly that constant energy loss to the background turbulence 
over time limits their maximum amplitude. In consequence the coherent or secondary 
mean velocity field is that mode that most effectively extracts energy in a volume- 
averaged sense from the mean motion, while minimizing energy loss to both viscous 
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dissipation and small-scale turbulence. Of course the coherent structures that Poje & 
Lumley have in mind have a vertical extent of perhaps 50 wall units, whereas those 
under consideration extend, since y = 4n/3a = 2/3, to the limits of the boundary 
layer. Nevertheless it appears that much the same type of optimization process may 
obtain in each. 

We should like to thank Wanmin Gong and Peter Taylor for use of their data prior 
to its publication and Julian Hunt for bringing it to our attention. The work was 
supported by National Science Foundation grants CTS-9008477 and OCE-9503456. 
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